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ABSTRACT

Prokaryotic CRISPR-Cas immunity is subverted via anti-CRISPRs (Acrs), small proteins
that inhibit Cas protein activities when expressed during the phage lytic cycle or from
resident prophages or plasmids. CRISPR-Cas defenses are classified into 6 types and
33 subtypes, which employ a diverse suite of Cas effectors and differ in their
mechanisms of interference. As Acrs often work via binding to a cognate Cas protein,
inhibition is almost always limited to a single CRISPR type. Furthermore, while acr
genes are frequently organized together in phage-associated gene clusters, how such
inhibitors initially evolve has remained unclear. Here we have investigated the Acr
content and inhibition specificity of a collection of Listeria isolates, which naturally
harbor four diverse CRISPR-Cas systems (types I-B, II-A, II-C, and VI-A). We observed
widespread antagonism of CRISPR, which we traced to 12 novel and 4 known Acr gene
families encoded on endogenous mobile genetic elements. Among these were two Acrs
that possess sequence homology to type I-B Cas proteins and assemble into a
defective interference complex. Surprisingly, an additional type I-B Cas homolog did not
affect type | immunity, but instead inhibited the RNA-targeting type VI CRISPR system
through sequestration of crRNA. By probing the IMGVR database of viral genomes, we
detected abundant orphan cas genes located within putative anti-defense gene clusters.
We experimentally verified the Acr activity of one viral cas gene, a particularly broad-
spectrum cas3 homolog that inhibits type I-B, II-A, and VI-A CRISPR immunity. Our
observations provide direct evidence of Acr evolution via cas gene co-option, and new
genes with potential for broad-spectrum control of genome editing technologies.
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MAIN

Prokaryotic CRISPR-Cas systems use RNA-guided Cas nucleases to provide their
hosts with sequence-specific immunity against foreign genetic elements, such as
bacteriophages and plasmids’-2. Small fragments of foreign DNA are captured and
integrated as “spacer” sequences in the CRISPR locus, which is then transcribed and
processed into mature crRNAs?*#*. These RNAs guide Cas nucleases in recognition and
cleavage of matching targets in foreign nucleic acids®2°. In response to the strong
selective pressure imposed by CRISPR immunity, phages and other mobile genetic
elements have evolved anti-CRISPR proteins (Acrs), which antagonize the immune
effector activities of Cas proteins, removing the barrier to infection®. Acrs work via
diverse mechanisms to inhibit critical steps of CRISPR immunity, including cas gene
expression’-8, assembly of CRISPR ribonucleoprotein complexes®'°, recognition of
target nucleic acids'"'2, and recruitment of effector nucleases'!. CRISPR-Cas systems
are highly diverse immune modules that differ in their cas gene sequences,
organization, and mechanism of target interference'. Most characterized Acrs act via a
protein-protein interaction with their cognate Cas protein, and therefore inhibition
specificity is almost always limited to a single CRISPR subtype.

How acr genes arise within phage genomes is not well understood. While some Acrs
have enzymatic activity and likely evolved from enzymes sharing the same fold, a lack
of detectable protein homology for most Acrs limits our ability to understand their
origins'%-14-16_One Acr (AcrlF3) has been shown to mimic the structure of the Cas
protein Cas8f to block recruitment of the type I-F CRISPR nuclease Cas2-3'":'8. AcrlF3
does not bear significant sequence homology to Cas8f, therefore it is unknown whether
this is a case of convergent evolution, or if the two proteins share a common ancestor
but have diverged to the point of unrecognizable similarity. Many archaeal viruses
encode homologs of Cas4, which normally plays a role in processing newly acquired
spacers'®?'. Some experimental evidence suggests viral Cas4 proteins inhibit spacer
acquisition, suggesting that cas genes might be co-opted by viruses for CRISPR
antagonism?2. While viral CRISPR-Cas systems are diverse and abundant®3, no viral
cas gene has been shown to inhibit the interference stage of immunity, and the extent of
acr evolution from cas genes has not been explored.

Listeria spp. have evolved a diverse suite of immune defenses, including four types of
CRISPR-Cas systems, to defend against abundant invading phages and mobile genetic
elements?4. The foodborne pathogen Listeria monocytogenes is a target of phage-
mediated biocontrol efforts, and understanding the anti-defense arsenal of Listeria
phages holds the potential to enhance this approach?s. Previous studies have
uncovered Acrs encoded by Listeria phages, including six that inhibit type II-A and one
that inhibits the type VI-A CRISPR-Cas system®1226, Genes encoding these inhibitors
are often clustered together in operons, located downstream of phage lysin genes, or
within plasmids. Here we investigated the frequency of endogenous Acr-mediated
inhibition by screening the functionality of 4 CRISPR types across 62 strains of Listeria
seeligeri. We bioinformatically predicted acr gene candidates and tested them, guided
by the results of our functional screen. These efforts uncovered 12 novel acr gene
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families (7 type I-B, 3 type II-C, 2 type VI-A). We found that 3 of these genes bear
sequence similarity to type |-B cas genes. Two of them (AcrlB3 and AcrlB4) inhibit type
I-B by assembling into a defective interference complex. The other (AcrVIA2) is a Cas3
homolog that inhibits the loading, processing, or stability of Cas13-associated crRNAs.
Finally, we performed a bioinformatic search for orphan cas genes in viral genomes,
revealing 358 putative anti-defense loci anchored by a diverse set of type I, II, llI, 1V,
and VI cas genes. We experimentally verified one of them in Listeria, a Cas3 homolog
exhibiting particularly broad-spectrum inhibitory activity against type I-B, VI-A, and II-A
CRISPR immunity. Overall, our results exemplify the complex phage-bacteria arms
race, and support a mechanism for frequent acr gene evolution from cas genes.

Variation in Listeria seeligeri genomes affects CRISPR-Cas function.

CRISPR-Cas loci can be readily identified by analysis of microbial genome sequences.
However, whether these systems provide functional immunity cannot be inferred from
sequence analysis alone. We previously established Listeria seeligeri as a tractable
model for studying type VI-A CRISPR-Cas immunity, and found that L. seeligeri strains
are also richly populated with type I-B, II-A, [I-C CRISPR systems, along with many
prophages and plasmids'22427.28 \We sought to determine the extent to which resident
mobile genetic elements and prophages affect the function of all four Listeria CRISPR-
Cas types. We cloned each type into the site-specific integrating vector pPL2e2° under
the control of a constitutive promoter, and equipped each with a spacer recognizing a
target plasmid (Fig. 1A). We first introduced each of these constructs into L. seeligeri
strain LS1 and confirmed that all four were capable of mediating sequence-specific
interference against a target plasmid that was introduced by conjugation (Fig 1B). Next,
we integrated each plasmid-targeting CRISPR-Cas construct into 54 out of the 62 L.
seeligeri strains in our laboratory’s collection, then challenged each of the 216 resultant
strains with a cognate target plasmid (Fig. 1C-D and Figs. S1-4). While each CRISPR
type remained functional in some of the recipient strains, we observed frequent loss of
CRISPR function among the different genetic backgrounds. The loss of CRISPR
function we observed for each type did not correlate with the natural occurrence of that
type in the tested strains (Fig 1E). We observed either a partial or complete loss of
CRISPR-Cas system function in 29% of strains assessed for type VI-A activity, 77%
tested for type |-B activity, 36% tested for type II-A activity, and 39% tested for type II-C
activity. In some cases, we were unable to determine whether a particular CRISPR type
was inhibited, due to low conjugation efficiency of both the target plasmid and a non-
targeted control (Fig. 1B, gray bars). The strains tested were least likely to support the
function of type I-B, the most common L. seeligeri CRISPR type, while most supported
the function of type VI-A, which is less abundant. In contrast, type II-C is the rarest type
among L. seeligeri strains, yet it frequently lost function when integrated into our tested
strains. Collectively, our findings indicate that variation in genetic background affects the
function of all four CRISPR types found in Listeria spp.

Identification of type I-B, II-A, 1I-C, and VI-A anti-CRISPR proteins.
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While the results above could be explained by the variable presence of unknown host
factors required for CRISPR-Cas function, we hypothesized that the four CRISPR types
might also be inhibited by anti-CRISPR proteins endogenously expressed by the strains
in our collection. To identify such inhibitors, we took an iterative guilt-by-association
bioinformatic approach that was guided by the results of our functional screen. Six type
[I-A inhibitor proteins and one type VI-A inhibitor have been previously identified in
Listeria phage genomes, and Acr genes are frequently clustered in operons associated
with prophages or other mobile genetic elements. Therefore, we tested genes located
within predicted Acr clusters for the ability to inhibit CRISPR types that could no longer
mediate interference when transplanted into the cluster's host genome. First, we
searched each of the L. seeligeri genomes in our collection for genes homologous to 81
known Acrs, which resulted in the identification of 25 predicted Acr loci. (Table S2). We
examined the genes predicted to be in the same operon as known Acrs in these loci,
generating a list of 33 putative anti-defense candidate gene families. Using these new
candidates as queries, we searched the genomes again to find new putative anti-
defense loci and anti-defense candidate genes, giving priority to genes located between
previously identified candidates. We also identified predicted loci and candidate genes
by searching Listeria genomes available in the NCBI nr and wgs databases. By
exhaustively iterating this process, we expanded our dataset to 55 predicted anti-
defense loci and 76 anti-defense candidate gene families residing within the 62 L.
seeligeri genomes in our collection (Fig. S5, Table S2).

Next, we investigated whether the Acr content of each host strain correlated with loss of
function for each transplanted CRISPR type (Figs. S5-9). No known type I-B inhibitors
exist in Listeria. However, of the 13 strains that did not support type II-A CRISPR
function, all encoded at least one previously identified type II-A Acr (Fig. S7).
Conversely, only 2 of the 32 strains supporting type II-A function contained a cognate
acr gene. Furthermore, AcrllA1 inhibits both type II-A and type II-C immunity8, and was
present in 10 of the 15 strains lacking type II-C function (Fig. S8). Finally, the only
known type VI-A acr (acrVIA1) in Listeria was present in a genome incompatible with
type VI-A interference, and was absent from all other genomes (Fig. S9). These data
suggest that the loss of CRISPR function observed in our screen can largely be
explained by host-encoded Acrs. We identified anti-defense candidate genes
specifically present in strains that inhibited types I-B, 1I-C, and VI-A, and expressed
each from a plasmid in strain LS1, which does not harbor any anti-CRISPR genes. We
then tested whether each candidate inhibited the matching CRISPR type in our plasmid
targeting assay (Fig. 2A). We prioritized testing of candidates that were present in
inhibitory strains for a given CRISPR type but absent from strains that tolerated function
of that type. We ultimately cloned 43 candidate genes, as well as 7 previously identified
acr genes, and tested each for inhibition of all four CRISPR types (Fig. 2B-C). Of the
tested novel candidates, 7 inhibited type I-B (hereafter acriB3-9), 3 inhibited type 1I-C
(acrllC7-9), and 2 inhibited type VI-A CRISPR immunity (acrVIAZ2-3) (see Table S2 for
protein sequences). Each of these Acrs were tested against each CRISPR type, but
specifically inhibited only one of the 4 types. We also noted that a L. seeligeri homolog
of the AcrllA3 protein tested in our assay was a potent inhibitor of type 1I-C CRISPR,
and did not inhibit type II-A, despite being 94.3% identical to L. monocytogenes AcrllA3.
While more than one Acr might be active in a given genome, the previously identified
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and newly discovered Acrs could collectively account for 68% of the inhibition observed
in our functional screen.

In total, we discovered 12 new Acr families, 11 of which each had several homologs
present in a variety of Listeria species and phages (Fig. 2D, Fig. S10). The occurrence
of these acr genes was limited to Listeria, except for AcrlIC9, which was also found in
other Firmicutes, notably Enterococcus. Genes encoding homologs of AcrIB3, AcriB4,
AcrlB7, AcriB8, AcrlIC7, AcrlIC8, and AcrVIA2 were found in mobile genetic elements
within Listeria genomes, while AcrIB5, AcrIB6, AcrIB7, AcrIB9, AcrlIC9, and AcrVIA3
were found in Listeria phage genomes. Few of these Acr proteins contained domains of
known function, however, we noted that four of them contained HTH domains predicted
to mediate DNA binding. Indeed, in addition to its CRISPR inhibition discovered here,
we previously demonstrated that the gene encoding AcrlIC9 functions as a negative
autoregulator of its own acr gene locus'2. Finally, three of the Acrs shared sequence
homology with type I-B Cas proteins, which we discuss in detail below.

Cascade component homologs inhibit type I-B CRISPR-Cas immunity.

Two of the newly discovered type I-B Acr proteins (AcrlB3 and AcrlB4) shared
sequence homology with two type I-B Cas proteins (Cas5 and Cas8b, respectively) that
assemble into the Cascade complex (Fig. 3A). The AcrlB3 protein shares 38% amino
acid identity with the full-length Cas5 protein (Fig. S11A), while the AcrlB4 protein
shares 38% amino acid identity with the last 90 residues of the 562aa Cas8b protein
(Fig. S11B). We hypothesized that AcrlB3 and AcrlB4 might inhibit type I-B CRISPR
immunity by acting as faulty subunits integrated within the Cascade complex. An
alternative possibility is that expression of any individual natural Cas protein from a
multi-copy plasmid would interfere with Cascade complex assembly via disruption of
subunit stoichiometry. To test whether this was the case, we separately expressed
AcriB3, AcriB4, and their cognate Cas protein homologs Cas5 and Cas8b, and tested
their effect on plasmid targeting by the type I-B CRISPR system (Fig. 3B). While the two
Acrs potently inhibited interference against the target plasmid, neither bona fide Cas
protein impacted immunity. We performed BLAST searches of AcrlB3 and AcriB4
against the NCBI nr database. In addition to numerous true Cas5 and Cas8b protein
homologs, we uncovered 45 and 49 unique homologs (respectively) which were not
located within CRISPR-Cas loci, and all limited to Listeria spp. (Fig. 3C). Our
phylogenetic analysis of the proteins uncovered by this search indicated that both Acrs
form their own high-confidence clades, suggesting an ancient divergence from their
cognate Cas proteins. We therefore conclude that AcrlB3 and AcriB4 are Cas protein
homologs that function as inhibitors of the type I-B CRISPR-Cas system.

To investigate the mechanism by which AcrlB3 and AcrlB4 inhibit type I-B CRISPR
immunity, we first tested whether they affected target DNA engagement by the Cascade
complex (Fig. 3D). We designed a CRISPRI-like assay in which we deleted the
nuclease cas3 from the CRISPR locus, then targeted Cascade to a plasmid-borne lacZ
reporter gene in L. seeligeri LS1. Inactivation of cas3 ensures that target DNA bound by
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Cascade will not be cleaved. When we probed for lacZ activity by growth on plates
containing X-gal, we observed CRISPR-dependent transcriptional silencing of the
targeted lacZ gene. When we co-expressed either AcrlB3 or AcrlB4 along with
Cascade, lacZ transcription was restored, suggesting that both anti-CRISPRs act
upstream of target DNA binding by the Cascade complex, and that neither function at
the level of Cas3 recruitment. Consistent with our previous observations, neither Cas5
nor Cas8b influenced target DNA recognition.

Next, we investigated whether AcrIB3 and/or AcriB4 affect assembly of the Cascade
complex. We began by constructing a type I-B CRISPR locus containing a casé6 allele
fused to a 3xFlag tag on the C-terminus. We confirmed that this fusion remained
functional in interference against a plasmid with a type I-B protospacer (Fig. S13A). We
then used this construct to perform anti-Flag immunoprecipitations of the Cascade
complex, in the presence and absence of AcrlB3 and AcrlB4. In the absence of Acrs,
the silver-stained Cas6-3xFlag immunoprecipitate fraction contained bands consistent
with the molecular weights of Cas8b, Cas7, Cas6, and Cas5, none of which were
present in a untagged control sample (Fig. 3E). When we co-expressed AcriB3 or
AcrIiB4, each Cascade subunit remained present in the immunoprecipitate, suggesting
that neither Acr impedes assembly of the type I-B Cascade complex. To test whether
AcrIB3 was integrated into the complex, we fused an N-terminal his6 tag onto AcrIB3,
confirmed that it was functional in inhibition of plasmid targeting by type I-B CRISPR,
and performed immunoprecipitation of the Cascade complex in the presence of his6-
AcrIB3 (Fig. 3F, Fig. S13b). We then analyzed the contents of the load, unbound, and
immunoprecipitated fractions by immunoblotting for Cas6-3xFlag, His6-AcrIB3, and the
housekeeping sigma factor . We found that His6-AcrIB3 (but not o*) strongly co-
immunoprecipitated with Cas6-3xFlag, suggesting that AcrIB3 assembles into the
Cascade complex. While we attempted to perform the same experiment with AcrlB4, we
could not obtain a functional tagged allele.

A Cas3 homolog inhibits type VI-A CRISPR immunity at the crRNA biogenesis
stage.

In addition to AcrIB3 and AcriB4, we discovered a third Acr protein (AcrVIA2) with
homology to type I-B Cas proteins (Fig. 4A). AcrVIA2 shares 24% sequence identity
with the helicase-nuclease Cas3 (Fig. S12). The homology between the two proteins is
centered on a shared DEAD-box helicase domain, and AcrVIA2 lacks the HD nuclease
domain of Cas3. Our homology searches uncovered several true Cas3 proteins as well
as 8 predicted AcrVIA2 homologs not located near a CRISPR array or cas gene operon,
2 of which were present on Listeria mobile genetic elements, while the rest were
encoded in Myoviridae phage genomes (Fig. 4B). Again, the Acrs formed a high-
confidence phylogenetic group separate from true Cas3 proteins. Surprisingly, we found
that this Acr did not inhibit type I-B immunity, but instead strongly inhibited the RNA-
targeting type VI-A CRISPR system (Fig. 2C). As with the two previously mentioned
Cas-homolog Acrs, we confirmed that bona fide Cas3 possessed no inhibitory activity
against Cas13 in a plasmid-targeting assay (Fig. 4C). When we mutated the AcrVIAZ2
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DEAD box (DEFD>AAFD), we found that it lost inhibitory activity, suggesting that this
domain is required for the function of AcrVIA2 (Fig. 4C). Next, we tested whether
AcrVIA2 could prevent Cas13 immunity against a phage target (Fig. 4D). We infected
lawns of L. seeligeri harboring a spacer (spc59) targeting the Cas13-sensitive phage
PLS59, while co-expressing AcrVIA2 from a plasmid. While we observed a CRISPR-
dependent reduction in $LS59 plaque formation in this system, expression of AcrVIA2
restored phage infection in the presence of Cas13 immunity. Finally, recognition of
target RNA by Cas13 stimulates a non-specific frans-RNase activity that induces cell
dormancy in L. seeligeri?®. We tested whether AcrVIA2 impacts activation of Cas13
trans activity using a strain harboring an aTc-inducible, non-essential, non-coding RNA
containing a protospacer recognized by spc4 of the type VI-A CRISPR array (Fig. 4E).
This strain is viable in the absence of target induction, but when plated on media
containing aTc, exhibits a strong Cas13-dependent growth defect as a consequence of
nonspecific RNase activity. In contrast, co-expression of AcrVIA2 abolished Cas13-
induced dormancy, and therefore prevents cleavage of target and non-target RNA.

Next we investigated the mechanism of Cas13 inhibition by AcrVIA2. We first attempted
to detect a physical interaction between both proteins. However, we were unable to
detect co-immunoprecipitation of Cas13-his6 along with a partially functional AcrVIA2-
3xflag allele (Fig. S14), suggesting that, unlike AcrVIA1, AcrVIA2 does not form a stable
interaction with Cas13. Accordingly, we tested whether AcrVIA2 impacts the assembly
of the Cas13:crRNA RNP complex. We immunoprecipitated a functionally tagged
Cas13-3xFlag allele in the presence and absence of AcrVIA2, then purified RNA from
the isolated protein and analyzed it by SYBR Gold staining (Fig. 4F). We detected an
RNA band consistent with the mature 51 nt crRNA in the immunoprecipitated Cas13
fraction, but this band was absent from the protein purified from cells expressing
AcrVIA2. Conversely, neither the AcrVIA2 DEAD-box mutant nor the unrelated protein
AcrVIA3 affected Cas13-associated crRNA levels. Collectively, these results suggest
that AcrVIA2 influences type VI-A crRNA processing, loading, or stability, in a
mechanism that depends on its DEAD-box motif.

Diverse viral cas genes reside in putative anti-defense loci.

Our discovery of 3 unique Acrs homologous to type I-B Cas proteins prompted us to
perform bioinformatic searches for other viral cas genes that might play anti-defense
roles. We used 536 Cas protein query sequences to probe for cas genes present in the
IMGVR database of high-confidence viral genomes. To enrich for putative Acrs, we then
removed all hits containing nearby predicted CRISPR arrays or high-confidence cas
gene operons. We further eliminated all genes located within 1 kb of DNA contig ends,
and genes that shared greater than 90% nucleotide sequence identity with an existing
hit. Ultimately, our analysis yielded 358 predicted orphan viral cas genes, representing
components of types |, II, lll, IV, and VI CRISPR-Cas systems (Fig. 5A, Table S3). The
predicted hosts infected by viruses harboring orphan cas genes included most bacterial
phyla, with Firmicutes and Bacteroidota phages being particularly abundant. We found
that several of the predicted viral cas genes were located next to known acr genes or
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predicted anti-defense candidates from our analysis in Listeria, supporting the idea that
some of the cas homologs in our dataset play anti-CRISPR roles (Fig. 5B and Fig. S15).

To investigate this, we selected acr gene candidates with homology to Listeria cas
genes, and tested their ability to inhibit plasmid targeting by each CRISPR type (Fig.
5C-D). Among the tested candidates was a cas3 homolog encoded on a Myoviridae
genome. Like AcrVIA2, this protein shared limited identity (~24%) with the DEAD-box
helicase domain of L. seeligeri Cas3, shared less than 40% sequence identity with
AcrVIA2 (Fig. 5C), and contained no additional domains of known function. Finally,
while AcrVIAZ2 is similar in length to Cas3, the viral Cas3 homolog identified in our
bioinformatic search was over twice the size, at 1,128 amino acids. We first the viral
Cas3 homolog’s ability to inhibit type VI-A CRISPR immunity against a targeted
plasmid, and found that it abolished Cas13-dependent interference. Due to its homology
to AcrVIA2, we refer to it as AcrVIA2.1. Next, we tested the inhibition spectrum of
AcrVIA2.1 against the four Listeria CRISPR-Cas types (Fig. 5D). Unlike AcrVIAZ2,
AcrVIA2.1 mediated strong inhibition of types VI-A, I-B, and II-A CRISPR interference.
Thus, of all anti-CRISPRs characterized to date, AcrVIA2.1 has both the largest size
and Cas protein inhibition spectrum. Collectively, our results suggest that there has
been extensive acr evolution from cas genes, and that searching for orphan cas genes
homologs in viral genomes is a useful approach to bioinformatically identify new anti-
defense gene loci.

DISCUSSION

Here we have investigated the occurrence of anti-CRISPR-mediated inhibition across a
large collection of bacterial isolates, and four CRISPR-Cas types. Our results suggest
the existence of widespread CRISPR antagonism present among Listeria seeligeri
strains, which can be accounted for by 4 known and 12 previously unidentified Acr
families. Three of these Acrs bear sequence identity to type |-B Cas subunits,
suggesting that each Acr shares a common ancestor with its cognate Cas component.
Our investigation of the mechanisms of these Acrs indicate that (i) AcrIB3 and AcrlB4
inhibit type I-B CRISPR immunity via assembly into a defective Cascade interference
complex that fails to engage target DNA, and (ii) AcrVIA2 inhibits type VI-A CRISPR
immunity by blocking the processing, loading, or stability of Cas13-associated crRNA.
To investigate the generality of Acr evolution from Cas proteins, we probed the IMGVR
database for the existence of orphan viral cas genes. We uncovered hundreds of
examples of viral cas genes that were not associated with a CRISPR array or complete
cas gene operon, instead residing near putative anti-defense genes. We experimentally
confirmed that at least one of these genes (AcrVIA2.1) exhibits exceptionally broad-
spectrum inhibition of CRISPR-Cas immunity in L. seeligeri. In addition to uncovering
numerous anti-CRISPR proteins that could potentiate phage therapy or gene editing
safety, our findings demonstrate that diverse viruses have co-opted cas genes for
CRISPR antagonism, and provide a new strategy for the unbiased identification of
counter-defense genes in prokaryotes.



344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366

367
368
369
370
371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388

Our results raise several questions regarding the evolutionary trajectories that could
convert a host-encoded cas gene to a phage-encoded acr. First, how do phages
capture cas genes? One possibility is via imprecise excision of temperate phages
integrated near CRISPR-Cas loci. During induction of such prophages, cas genes could
occasionally be packaged into viral capsids along with the phage genome. Varble and
colleagues® recently demonstrated that some Streptococcus phages integrate directly
into the degenerate repeats of type II-A CRISPR arrays, and can sometimes capture
and mobilize spacer sequences. It remains to be seen whether such a mechanism
could also promote viral capture of whole cas genes or fragments thereof. Once a cas
gene is integrated into a phage genome, it may not immediately play a role in CRISPR
antagonism. Instead, viral cas genes might stimulate CRISPR immunity to play a
protective role for lysogenized hosts that could otherwise be infected by a second
phage. Next, how is a viral cas gene exapted into an anti-CRISPR? Because Cas
proteins naturally make interactions with other Cas proteins, crRNA, and target nucleic
acids, they are well-poised to evolve into inhibitors that block CRISPR immunity. Any
phage-encoded Cas protein that interacts with two or more components of the CRISPR
RNP might develop inhibitory activity by simply losing one of these interactions while
maintaining another, resulting in a faulty Cas subunit that inactivates immunity. One
benefit of this strategy (as compared to non-Cas anti-CRISPRs) is that it may be difficult
for CRISPR systems to evolve resistance against such inhibitors, since they resemble
the very Cas components used for immunity. Finally, our results raise the possibility that
subunits of anti-phage immune systems beyond CRISPR may also serve as raw
material for counter-defense evolution.

In this study, we uncovered a total of 12 anti-CRISPR families present in Listeria
prophages and mobile genetic elements. Residing beside these acr genes were 64
additional anti-defense candidate genes, 26 of which exhibited no detectable CRISPR
inhibition in our assay (Table S2). While some of these genes may serve other
functions, their frequent co-occurrence with and proximity to acr genes suggests that
many could play an anti-defense role, possibly against one or more of the other anti-
viral defense systems found in Listeria spp. Indeed, recent studies have uncovered
examples of viral inhibitors of CBASS, Pycsar, Thoeris, Gabija, and Hachiman
defenses®'-34,

Though CRISPR-Cas systems are abundant in Listeria spp., our functional screen
revealed that most are inhibited by endogenous Acrs. Such frequent inhibition likely
provides a selective pressure to acquire new diverse immune systems not susceptible
to existing Acrs. For example, while we observed inhibition of the highly abundant type
I-B CRISPR in 77% of the tested L. seeligeri strains, the less common type VI-A system
was only inhibited in 29% of strains. If inhibition is widespread, why are CRISPR
systems retained by the host? On the contrary, recent evidence suggests that
prophage-encoded Acrs promote retention of host CRISPR-Cas systems, by preventing
autoimmune cleavage of targets within the integrated prophage?®®. Maintenance of
functional CRISPR immunity despite the presence of Acrs could provide a fitness
benefit in the event that the host becomes cured of the prophage or MGE harboring acr
genes. In total, our findings represent an example of the diversity of evolved interactions
in the ongoing phage-host arms race.
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METHODS

Bacterial strains and growth conditions:

L. seeligeri strains were cultured in Brain Heart Infusion (BHI) medium at 30°C. Where
appropriate, BHI was supplemented with the following antibiotics for selection: nalidixic
acid (50 pg/mL), chloramphenicol (10 pg/mL), erythromycin (1 pg/mL), or kanamycin
(50 pg/mL). For cloning, plasmid preparation and conjugative plasmid transfer, E. coli
strains were cultured in Lysogeny Broth (LB) medium at 37 °C. Where appropriate, LB
was supplemented with the following antibiotics: ampicillin (100 pg/mL),
chloramphenicol (25 ug/mL), kanamycin (50 pg/mL). For conjugative transfer of E. coli —
Listeria shuttle vectors, plasmids were purified from Turbo Competent E. coli (New
England Biolabs) and transformed into the E. coli conjugative donor strains SM10 Apir
or S17 Apir. For a list of strains used in this study, see Table S1.

Plasmid construction and preparation:

All genetic constructs for expression in L. seeligeri were cloned into the following three
compatible shuttle vectors, each of which contains an origin of transfer sequence for
mobilization by transfer genes of the IncP-type plasmid RP4. These transfer genes are
integrated into the genome of the E. coli conjugative donor strains SM10 Apir or S17
Apir. All plasmids used in this study, along with details of their construction can be found
in Table S1.

pPL2e: ectopically integrating plasmid conferring chloramphenicol resistance in E. coli
and erythromycin resistance in Listeria; integrates into the tRNA”9 locus in the L.
seeligeri chromosome?®.
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pAMS: E. coli-Listeria shuttle vector conferring ampicillin resistance in E. coli and
chloramphenicol resistance in Listeria®.

pAM326: E. coli-Listeria shuttle vector conferring kanamycin resistance in E. coli and
Listeria?.

Mobilizable CRISPR-Cas systems were constructed by cloning the type I-B, II-A, II-C,
and VI-A CRISPR-Cas loci into pPL2e, each equipped with a spacer matching a target
plasmid. Target plasmids were derived from pAM8. In the case of type II-A, one variant
of the CRISPR-Cas plasmid harbored a spacer targeting a protospacer region on pAM8
followed by an NGG PAM, and a separate CRISPR plasmid harbored a non-targeting
spacer. The same approach was taken for type [I-C, except the protospacer region was
followed by an NNGCAA PAM. For types I-B and VI-A, naturally occurring spacers were
used in the CRISPR plasmid, and matching protospacers were inserted into pAM8. The
type I-B protospacer was preceded by a 5° CCN PAM. The type VI-A protospacer was
inserted into a transcribed region in the 3’ UTR of the chloramphenicol resistance gene
of pAMS.

Putative anti-CRISPR constructs were assembled by cloning into Ncol/Eagl digested
pAM551, which is derived from pAM326 and contains an aTc-inducible Pt promoter.

E. coli — L. seeligeri conjugation:

All genetic constructs for expression in L. seeligeri were introduced by conjugation with
E. coli donor strains SM10 Apir or S17 Apir. 100 yL of each donor and recipient culture
were diluted into 10 mL of BHI medium and concentrated on a 0.45 um porosity filter
disk using vacuum filtration. Filter disks were laid onto BHI agar supplemented with
oxacillin (8 pg/mL for pPL2e or pAM326 derived plasmids and 128 ug/mL for pAM8
derived plasmids) which weakens the cell wall and enhances conjugation, then
incubated at 37°C for 4 hours. Cells were resuspended in 2 mL BHI, serially diluted, and
transconjugants were selected on BHI medium containing 50 pg/mL nalidixic acid
(which kills donor E. coli but not recipient L. seeligeri) in addition to the appropriate
antibiotic for plasmid selection. Transconjugants were isolated after 2-3 days of
incubation at 30°C.

Phylogenetic tree construction:

To reconstruct Acr phylogeny, query Acr proteins were searched against the BLAST nr
database?® using an E-value cutoff of 5x10- (for AcriB4) or 1x10 (for all other Acrs).
The top 250 hits were aligned using T-Coffee®’. For AcrlB4, only the C-terminal 90
amino acids were included for alignment, as this is the region with shared homology
between AcrlB4 and the much larger Cas8b. Phylogenetic trees and bootstrap values
were calculated using MEGA (v11)28, using the neighbor-joining method with 1000
bootstrap replications.

Co-immunoprecipitation:

L. seeligeri harboring FLAG-tagged and/or His6-tagged proteins was cultured in 30 mL
BHI to saturation, then pelleted by centrifugation. Cells were resuspended in 1.5 mL lysis
buffer containing 50 mM HEPES pH 7, 150 mM NaCl, 5 mM MgClz, 5% glycerol, 1 mM
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PMSF, and 2 mg/mL lysozyme, then incubated at 37°C for 20 min. Lysis was performed
by sonication, then insoluble material was pelleted by centrifugation at 15,000 rpm for 10
min. The clarified supernatants were sampled (load fraction), then applied to 40 pL of
buffer-equilibrated M2 anti-Flag antibody affinity resin (Sigma-Aldrich) and incubated at
4°C for 2 h. Flag resin was pelleted by centrifugation at 1,000 rpm for 1 min, and the
supernatant was sampled (unbound fraction). Flag resin was washed three times for 5
min each with 1 mL wash buffer (50 mM HEPES pH 7, 150 mM NaCl, 5 mM MgClz, 5%
glycerol). Finally, the immunoprecipitated fraction was eluted with 40 pL of 0.1 mg/mL
3xFlag peptide (Sigma-Aldrich) at room temperature. All samples were denatured by
dilution in 2x Laemmli sample buffer containing 4% SDS and 10% beta-mercaptoethanol.
Load, unbound, and IP fractions were analyzed by immunoblot using anti-Flag (Sigma-
Aldrich), anti-His6 (Genscript), and anti-o”* (gift of David Rudner, Harvard Medical School)
antibodies. Silver staining was performed on 12 yL of each immunoprecipitate sample,
using the Pierce Silver Staining Kit (Thermo Fisher) according to the manufacturer’s
instructions.

Analysis of Cas13-associated crRNA:

L. seeligeri cultures harboring cas13-his6 and/or acrVIA2 were grown to saturation. 50
mL culture was harvested, pelleted at 4300 rpm and frozen at -80°C. Pellets were
resuspended in ice-cold lysis buffer (50 mM HEPES pH7.0, 150 mM NaCl, 5mM MgClI2,
10 mM imidazole, 1 mg/mL lysozyme, 1 mM phenylmethylsulfonylfluoride, 5% glycerol)
and lysed by sonication. Lysate was centrifuged at 15,000 rpm for 15 minutes at 4°C.
Soluble material was batch bound for 2 hours with 50uL of Ni-NTA HisBind Resin. Resin
was then washed three times with 1 mL wash buffer (50 mM HEPES pH7.0, 150 mM
NaCl, 5mM MgCI2, 10 mM imidazole 5% glycerol) and eluted with wash buffer
supplemented with 250 mM imidazole. RNA was purified using the Direct-zol RNA
miniprep kit (Zymo Research). Samples were resolved by denaturing 15% TBE-Urea
PAGE, stained with SYBR Gold according to the manufacturer’s instructions, and imaged
on an Azure Biosystems Azure 600 imager.

Phage propagation:

All phage infections were performed in BHI medium supplemented with 5 mM CaCl2. To
generate phage lysates, existing phage stocks were diluted to single plaques on a lawn
of L. seeligeri LS1 ARM1 ARM?2 and a single plaque was purified twice to ensure
homogeneity. 5 mL of cell culture was infected with phage at MOI 0.1, OD 0.1 and the
infection proceeded overnight. The lysate was centrifuged for 20 minutes at 4,000 rpm
and the supernatant was filtered using a 0.45 pym pore syringe filter.

Bioinformatic identification of viral cas genes:

The IMGVR?7.1 database of high-confidence viral genomes?3® was probed for sequences
with homology to 536 Cas protein query sequences, representing all known CRISPR
subtypes'®. Each query was searched against IMGVR7.1 using tblastn3® with an E-
value cutoff of 1x10*. 20 kb of genomic sequence flanking each hit gene was retrieved
using bedtools*°, and hits were deduplicated using genometools sequnig*'. Hit genomic
regions were analyzed for bona fide CRISPR-Cas systems using CRISPRCasTyper*?,
and all hits containing either predicted CRISPR arrays or cas gene operons were
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removed from analysis. Hits were further filtered to remove any cas genes located
within 1 kb of a contig end, and hits sharing greater than 90% nucleotide sequence
identity were collapsed using T-Coffee seq_reformat®’. Finally, the IMGVR7.1 database
was probed as above for homologs of known Acrs, anti-restriction-modification3, anti-
Hachiman?3, anti-Gabija, and anti-Thoeris genes, and hits within 10 kb of a predicted
cas gene were tabulated. The UViG identifier for each hit was used to retrieve predicted
host phylogeny from IMGVR. For gene loci diagrams, ORFs were predicted with
prokka** and diagrams were generated with Clinker>,
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Figure 1. Variation in L. seeligeri genomes affects CRISPR-Cas function. (A) Schematic of mobilizable chromosomally-integrating CRISPR-Cas
loci each equipped with a single plasmid-targeting spacer. (B) Plasmid targeting assay demonstrating sequence-specific interference by all four
CRISPR-Cas types in strain LS1. (C) Schematic of strategy to detect activity of endogenous Acrs by introducing CRISPR-Cas loci into diverse strain
backgrounds and challenging them with target plasmid. (D) Functionality of 4 CRISPR types across 62 L. seeligeri strains. (E) Natural occurrence of
CRISPR types across the strain collection.
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Figure 2. Identification of 12 type I-B, lI-C, and VI-A anti-CRISPR families (A) Schematic of strategy to test Acr candidates. Acrs were expressed
from a plasmid and introduced into strain LS1 harboring an active CRISPR-Cas system, then challenged with a target plasmid. (B) Genetic loci
encoding known and novel Acrs. Known Acrs shown in purple. Anti-defense candidate genes used in prediction of Acr loci shown in yellow. Novel Acrs
with activity demonstrated here shown in orange. n, number of instances of indicated gene in L. seeligeri collection. (C) Inhibition spectrum of tested
Acrs. Each Acr candidate was tested against all four CRISPR-Cas systems in a plasmid targeting assay. (D) Acrs discovered in this study. Predicted
protein domains noted, with HTH (helix-turn-helix) domains depicted in black. MGE, mobile genetic element.
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Figure 3. AcriB3 and AcriB4 are Cas protein homologs that inhibit type I-B CRISPR immunity (A) Schematic of genetic loci encoding AcrlB3 and
AcriB4 (opaque orange) and type |-B CRISPR-Cas locus. Percent sequence identity between AcrlB3 and Cas5, and AcrlB4 and the CTD of Cas8b are
noted. (B) Plasmid targeting assay demonstrating that expression of AcrIB3 and AcrlB4, but not their cognate Cas proteins Cas5 and Cas8b, inhibits
type I-B CRISPR immunity. (C) Predicted phylogeny of AcriB3 and AcrlB4 homologs uncovered by BLAST search. Black circles indicate nodes with
>80% boostrap support. Orange circles indicate Acrs characterized experimentally. Scale bar indicates branch length (AU). (D) CRISPRI /acZ silencing
assay using a nuclease-deficient CRISPR system, demonstrating that both AcrIB3 and AcrIB4 inhibit target DNA recognition by Cascade. (E) Silver
stain analysis of Cas6-3xFlag (or untagged) immunoprecipitate fractions in the presence or absence of Acrs. Molecular weight marker, kDa. (F)
Co-immunoprecipitation of His6-AcrlB3 and Cas6-3xFlag. The housekeeping sigma factor o* is shown as a non-interacting control. L, load, UB,
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Figure 4. AcrVIA2 is a Cas3 homolog that inhibits type VI-A CRISPR immunity (A) Schematic of genetic loci encoding AcrVIA2 (opaque orange)
and type I-B CRISPR-Cas locus. Percent sequence identity between AcrVIA2 and Cas3 is noted. (B) Predicted phylogeny of AcrVIA2 homologs
uncovered by BLAST search. Black circle indicates node with 100% bootstrap support. Orange circle indicates experimentally characterized Acr. Scale
bar indicates branch length (AU). (C) Plasmid targeting assay demonstrating that expression of AcrVIA2, but not Cas3 or an AcrVIA2 DEAD-box mutant
allele, inhibits type VI-A CRISPR immunity. (D) Plaque assay demonstrating that AcrVIA2 inhibits type VI-A immunity against a phage target. nt,
non-targeting, spc59, spacer targeting an early lytic transcript of $LS59. (E) AcrVIAZ2 inhibits trans-RNase activity of Cas13 in vivo. Strain LS1 harboring
an aTc-inducible type VI-A protospacer, plus AcrVIA2, was plated on media with or without aTc, as indicated. (F) The effect of AcrVIA2 on crRNA
associated with affinity-purified Cas13-his6. Nucleotide molecular weight marker shown.
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Figure 5. Diverse viral cas genes reside in putative anti-defense loci (A) Frequency of orphan viral cas genes found in the IMGVR database,
organized by Cas protein query and predicted viral host phylum. Cas queries are colored by CRISPR type (green - type I; blue - type II; pink - type III;
yellow - type IV; purple - type VI). (B) Example loci schematics for viral cas genes found in the vicinity of known anti-CRISPRs or other predicted
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protein lengths. (D) Plasmid targeting assay demonstrating the CRISPR inhibition spectrum of viral Cas3 protein.
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Figure S1. Variation in L. seeligeri strain background affects type I-B CRISPR-Cas immunity. Plasmid targeting assay in which the indicated L.
seeligeri strains were first transformed with a chromosomally integrated type I-B CRISPR-Cas system equipped with a spacer targeting a conjugative
plasmid, then challenged with either a non-target plasmid (left columns) or plasmid containing a target protospacer (right columns).



conjugative plasmid
no target type II-A target

LS2

LS3
LS4
LS5
LS6
LS7
LS8
LS11
LS12
LS13
LS14
LS15
LS16
LS17
LS18
LS19
LS20

MR

conjugative plasmid
no target type Il-A target

LS21

LS23
LS24
LS25
Ls27
LS28
LS29
LS30
LS32
LS34
LS35
LS36
LS37
LS38
LS39
LS40
LS43

AR

conjugative plasmid
no target type II-A target

LS44
LS45
LS46
LS47
LS48
LS49
LS50
LS51
LS52
LS53
LS54
LS55
LS56
LS57
LS58
LS59
LS60

AN

Figure S2. Variation in L. seeligeri strain background affects type II-A CRISPR-Cas immunity. Plasmid targeting assay in which the indicated L.
seeligeri strains were first transformed with a chromosomally integrated type 1I-A CRISPR-Cas system equipped with a spacer targeting a conjugative
plasmid, then challenged with either a non-target plasmid (left columns) or plasmid containing a target protospacer (right columns).
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Figure S3. Variation in L. seeligeri strain background affects type 1I-C CRISPR-Cas immunity. Plasmid targeting assay in which the indicated L.
seeligeri strains were first transformed with a chromosomally integrated type 1I-C CRISPR-Cas system equipped with a spacer targeting a conjugative
plasmid, then challenged with either a non-target plasmid (left columns) or plasmid containing a target protospacer (right columns).
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Figure S4. Variation in L. seeligeri strain background affects type VI-A CRISPR-Cas immunity. Plasmid targeting assay in which the indicated L.
seeligeri strains were first transformed with a chromosomally integrated type VI-A CRISPR-Cas system equipped with a spacer targeting a conjugative
plasmid, then challenged with either a non-target plasmid (left columns) or plasmid containing a target protospacer (right columns).
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Figure S5. Anti-defense candidate (adc) gene occurrence across 62 strains of L. seeligeri. Each row correponds to either a known anti-CRISPR
gene or a particular anti-defense candidate gene identified as frequently encoded nearby acr genes or nearby other well-established anti-defense
canddiates. Each column corresponds to an individual L. seeligeri strain genome. Filled red boxes indicate occurence of a putative anti-defense gene in
a particular strain.
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Figure S6. Anti-defense candidate (adc) gene occurrence among L. seeligeri strains that inhibit (or tolerate) type I-B CRISPR immunity. Each
row correponds to either a known anti-CRISPR gene or a particular anti-defense candidate gene identified as frequently encoded nearby acr genes or
nearby other well-established anti-defense canddiates. Each column corresponds to an individual L. seeligeri strain genome. The group of columns on
the left indicate strains that inhibited type I-B CRISPR immunity in the plasmid targeting assay shown in Fig. 1, while the group on the right tolerated
type I-B immunity. Filled red boxes indicate occurence of a putative anti-defense gene in a particular strain. Gene names in red indicate experimentally
validated type I-B Acrs from this study.
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Figure S7. Anti-defense candidate (adc) gene occurrence among L. seeligeri strains that inhibit (or tolerate) type II-A CRISPR immunity. Each
row correponds to either a known anti-CRISPR gene or a particular anti-defense candidate gene identified as frequently encoded nearby acr genes or
nearby other well-established anti-defense canddiates. Each column corresponds to an individual L. seeligeri strain genome. The group of columns on
the left indicate strains that inhibited type 1I-A CRISPR immunity in the plasmid targeting assay shown in Fig. 1, while the group on the right tolerated
type 1I-A immunity. Filled red boxes indicate occurence of a putative anti-defense gene in a particular strain. Gene names in red indicate experimentally
validated type II-A Acrs.
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Figure S8. Anti-defense candidate (adc) gene occurrence among L. seeligeri strains that inhibit (or tolerate) type II-C CRISPR immunity. Each
row correponds to either a known anti-CRISPR gene or a particular anti-defense candidate gene identified as frequently encoded nearby acr genes or
nearby other well-established anti-defense canddiates. Each column corresponds to an individual L. seeligeri strain genome. The group of columns on
the left indicate strains that inhibited type 1I-C CRISPR immunity in the plasmid targeting assay shown in Fig. 1, while the group on the right tolerated
type 1I-C immunity. Filled red boxes indicate occurence of a putative anti-defense gene in a particular strain. Gene names in red indicate experimentally
validated type II-C Acrs from this study.
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Figure S9. Anti-defense candidate (adc) gene occurrence among L. seeligeri strains that inhibit (or tolerate) type VI-A CRISPR immunity. Each
row correponds to either a known anti-CRISPR gene or a particular anti-defense candidate gene identified as frequently encoded nearby acr genes or
nearby other well-established anti-defense canddiates. Each column corresponds to an individual L. seeligeri strain genome. The group of columns on
the left indicate strains that inhibited type VI-A CRISPR immunity in the plasmid targeting assay shown in Fig. 1, while the group on the right tolerated
type VI-A immunity. Filled red boxes indicate occurence of a putative anti-defense gene in a particular strain. Gene names in red indicate experimental-
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Figure S10. Predicted phylogeny of newly discovered type I-B, 1I-C, and VI-A anti-CRISPR proteins. Predicted phylogeny of Acr homologs
uncovered by BLAST search. Scale bar indicates branch length (AU). See Fig. 3 for predicted phylogeny of AcrIB3 and AcrlB4 homologs. See Fig. 4 for
predicted phylogeny of AcrVIA2 homologs.
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Figure S11. Sequence alignment of type I-B Acrs and type I-B Cas proteins (A) Sequence alignment of AcrIB3 and Cas5 from L. seeligeri strain
LS1. Identical residues are highlighted in red, while similar residues are in red text with blue outlines. (B) As for (A), but for AcriIB4 and Cas8b.
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Figure S12. Sequence alignment of AcrVIA2 and the type I-B helicase-nuclease Cas3. Sequence alignment of AcrVIA2 and Cas3 from L. seeligeri
strain LS1. Identical residues are highlighted in red, while similar residues are in red text with blue outlines.
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Figure S13. Functionality of affinity-tagged Cas proteins (A) Cas6-3xFlag functions in immunity against a plasmid containing a protospacer
recognized by the type I-B CRISPR system. (B) His6-AcrIB3 functions in inhibition of type I-B CRISPR immunity in the plasmid targeting assay.
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Figure S14. No detectable interaction between AcrVIA2 and Cas13 (A) AcrVIA2-3xFlag is partially functional in inhibition of immunity against a
plasmid expressing an RNA protospacer recognized by the type VI-A CRISPR system. (B) No detectable co-immunoprecipitation of Cas13-his6 and
AcrVIA2-3xFlag. The housekeeping sigma factor o* is shown as a non-interacting control. L, load, UB, unbound, IP, immunoprecipitate.
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Figure S15. Orphan viral cas genes in the vicinity of known acr genes or putative anti-defense candidates (adc). Orphan viral cas gene
homologs detected in the IMGVR database (green) that are located nearby known anti-CRISPR genes or putative anti-defense candidates (red). The
unique viral genome identifer (UViG) number is shown for each locus. See other examples in Fig. 5B.



